Quantitative Structure–Property Relationships for Octanol-Air Partition Coefficients of PCDD/Fs

J. W. Chen, 1,2,* X. Quan, Y. Z. Zhao, F. L. Yang, K.-W. Schramm, A. Kettrup^{2,3}

 School of Environmental Science and Technology, Dalian University of Technology, Zhongshan Road 158-129, Dalian 116012, People's Republic of China
 Institute of Ecological Chemistry, GSF-National Research Center for Environment

and Health, D-85764, Neuherberg, Munich, Germany

3 Department of Ecological Chemistry and Environmental Analytics, Technical University of Munich, 85350 Freising-Weihenstephan, Germany

Received: 26 February 2001/Accepted: 16 March 2001

Polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDD/Fs) are typical persistent pollutants with high toxicity (Nebert, 1989). Recent studies (Younes 1999; Fossi $et\ al.$ 1999) reveal that most PCDD/Fs are endocrine disrupting chemicals. The octanol-air partition coefficient ($K_{\rm OA}$) is recognized as a key descriptor of chemicals partitioning between the atmosphere and organic phases (Harner $et\ al.$ 2000). Recently, $K_{\rm OA}$ based approaches have been successfully employed to model surface-air partitioning of persistent organic pollutants of aerosols, soil and vegetation (Harner $et\ al.$ 2000). However it is difficult to comprehensively determine the $K_{\rm OA}$ for all PCDD/Fs because of large expenditures of money and time. Thus the development of quantitative structure-property relationship (QSPR) models for $K_{\rm OA}$ is very important.

As quantum chemical descriptors can be easily obtained by computation, can clearly describe defined molecular properties, and are not restricted to closely related compounds, the development of QSPR models in which quantum chemical descriptors are used is of great importance. According to the present chemometric theory, as many relevant data as possible should be considered in QSPR studies because this increases the probability of a good characterization of compounds (Kaliszan, 1993). As a consequence of the increase of the number of descriptors, the problem of intercorrelation of independent variables (multicollinearity) will increase. Especially when the number of independent variables is equal to or greater than the number of compounds in the training set, regression analysis (a method that was frequently used in QSPR studies) will not be useful. To overcome these problems, the partial least squares (PLS) method, a widely used chemometric method first developed by Wold *et al.* (1984), will be used in this study.

MATERIALS AND METHODS

Recently, Harner *et al.* (2000) have determined $\log K_{OA}$ values for 10 PCDD and 1 PCDFs at 298 K using a generator column method. These 11 PCDD/Fs constitute the training set of the study. The $\log K_{OA}$ values are reproduced in Table 1. In addition, some other PCDD/Fs (mainly those with chlorines substituted in the 2,3,7,8 positions) were selected randomly in the study. The 2,3,7,8- substituted PCDD/Fs are thought to pose a risk to human health due to their toxicity, carcinogenic potency, and potential effects on animal reproductive and immunological systems (Safe, 1986). Their $\log K_{OA}$ will be predicted based on the models obtained. The predicted values may be useful in exposure assessment of the PCDD/Fs.

^{*}Present address: Institute of Ecological Chemistry, GSF-National Research Center for Environment and Health, D-85764, Neuherberg, Munich, Germany Correspondence to: J. W. Chen

PM3 (Stewart 1989a: 1989b) Hamiltonian contained in the quantum chemical computation software MOPAC (Ver. 6.0. Stewart, J. J. P. 1990. Frank J. Seiler Research Laboratory, U. S. Air Force Academy, Co. 80840) was used to compute quantum chemical descriptors of the PCDD/Fs. The PM3 was selected because it is a recently developed semi-empirical molecular orbital algorithm and the computational time is much shorter than needed by ab initio methods. MOPAC was run with the following keywords: PM3. ESP. POLAR, DIPOLE, PRECISE.

A total of 12 MOPAC derived descriptors reflecting the overall character of the PCDD/F molecules were selected in this study. They are molecular weight (Mw), average molecular polarizability (α), dipole moment (μ) , final heat of formation (HOF), total energy (TE), electronic energy (EE), core-core repulsion energy (CCR , CCR = TE - EE),energy of the highest occupied molecular orbital (E_{homo}) , energy of the lowest unoccupied molecular orbital (E_{tumo}) , the largest negative atomic charge on a carbon atom (Q_C) , the most positive net atomic charges on a hydrogen atom (Q_{H}^{+}) , and the most positive net atomic charges on a chlorine atom $(Q_{C_1}^+)$. The values for some of the molecular

Table 1. The PCDD/Fs and their $\log K_{OA}$ values $(298 \text{ K})^*$

	Compounds	Obs.	Pred.	SE	Obs.
	•				(RTI)
1	Dioxin		7.08	±0.13	
2	1-CDD	7.86	7.77	±0.11	
3	2-CDD		7.78	±0.09	
4	$2,3-D_2CDD$		8.57	±0.07	8.50
5	$2,7-D_2CDD$	8.36	8.45	±0.07	8.48
6	$2,8-D_2CDD$	8.36	8.46	±0.07	8.48
7	1,2,4-T ₃ CDD		9.22	±0.06	8.97
8	2,3,7-T ₃ CDD	9.14	9.21	±0.05	9.42
9	1,2,3,4-T ₄ CDD	9.70	9.84	±0.06	9.64
10	1,2,3,7-T ₄ CDD		9.89	±0.05	9.94
11	1,3,6,8-T ₄ CDD		9.76	±0.05	9.38
12	2,3,7,8-T ₄ CDD	10.05	9.85	±0.05	9.95
13	1,2,3,4,7-P ₅ CDD	10.67	10.47	± 0.06	10.42
14	1,2,3,7,8-P ₅ CDD	10.57	10.51	±0.06	10.46
15	1,2,3,4,7,8-H ₆ CDD	11.11	11.07	±0.07	10.95
16	1,2,3,6,7,8-H ₆ CDD		11.04	±0.07	10.97
17	1,2,3,7,8,9-H ₆ CDD		11.05	±0.07	11.01
18	1,2,3,4,6,7,8-H ₇ CDD	11.42	11.61	±0.09	11.45
19	O_8CDD		12.15	±0.12	12.05
20	Dibenzofuran		7.19	±0.13	
21	$2,8-D_2CDF$		8.54	±0.13	8.36
22	$1,2,7,8-T_4CDF$		9.97	±0.11	9.78
23	2,3,7,8-T ₄ CDF	10.02	10.03	±0.13	9.82
24	1,2,3,8,9-P ₅ CDF		10.58	± 0.11	10.48
25	2,3,4,7,8-P ₅ CDF		10.72	±0.12	10.37
26	1,2,3,4,7,8-H ₆ CDF		11.33	±0.13	10.77
27	1,2,3,6,7,8-H ₆ CDF		11.29	±0.13	10.78
28	1,2,3,4,8,9-H ₆ CDF		11.22	±0.12	10.95
29	1,2,3,7,8,9-H ₆ CDF		11.25	±0.13	10.93
30	2,3,4,6,7,8-H ₆ CDF		11.30	±0.13	10.87
31	1,2,3,4,6,7,8-H ₇ CDF		11.90	± 0.14	11.17
32	1,2,3,4,7,8,9-H ₇ CDF		11.88	±0.14	11.43
33	O ₈ CDF		12.46	±0.15	11.90

* Obs.: Observed values (298 K) determined by Harner et al. (2000) using a generator column method; Pred.: Predicted values by model (2) of this study, SE: Standard errors of the predicted values; Obs.(RTI): $\log K_{\text{OA}}$ values determined semi-emperically by retention time indices (RTI) using eq. 2 of Harner et al. (2000) (the data was provided by Dr. Harner).

descriptors are listed in Table 2. The compound numbers in Table 2 correspond to those in Table 1. The unit of *HOF* is kilocalories, and units of energy, charge, dipole and polarizability are electron volts (eV), atomic charge units (a.c.u) and atomic units (a.u.) respectively.

Table 2. Selected quantum chemical descriptors of the PCDD/Fs

1 110.156 184.194 -2130.603 -11891.038 9760.435 -0.178 2 119.914 218.639 -2431.938 -13536.608 11131.670 -0.298 0.102 3 122.345 218.639 -2432.001 -13399.609 10967.608 -0.368 0.073 4 134.107 253.084 -2733.349 -15066.905 12333.557 -0.533 0.101 5 134.935 253.084 -2733.396 -14958.712 12225.316 -0.527 0.076 6 134.897 287.529 -3034.614 -17081.506 14046.892 -0.603 0.134 8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 9 154.804 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 10 157.106 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.040		Name 2. Selected quantum chemical descriptors of the PCDD/Fs							
2 119.914 218.639 -2431.938 -13536.608 11131.670 -0.298 0.102 3 122.345 218.639 -2432.001 -13399.609 10967.608 -0.368 0.073 4 134.107 253.084 -2733.349 -15066.905 12333.557 -0.533 0.101 5 134.935 253.084 -2733.396 -14958.712 12224.004 -0.522 0.076 6 134.897 253.084 -2733.396 -14958.712 12225.316 -0.527 0.076 7 143.019 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 10 157.106 321.974 -3335.026 -18660.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 <t< td=""><td>No</td><td>α</td><td>Mw</td><td>TE</td><td>EE</td><td>CCR</td><td>E_{lumo}</td><td>$Q_{\mathrm{Cl}}^{^+}$</td></t<>	No	α	Mw	TE	EE	CCR	E _{lumo}	$Q_{\mathrm{Cl}}^{^+}$	
3 122.345 218.639 -2432.001 -13399.609 10967.608 -0.368 0.073 4 134.107 253.084 -2733.349 -15066.905 12333.557 -0.533 0.101 5 134.935 253.084 -2733.395 -14957.399 12224.004 -0.522 0.076 6 134.897 253.084 -2733.396 -14958.712 12225.316 -0.527 0.076 7 143.019 287.529 -3034.614 -17081.506 14046.892 -0.603 0.134 8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 9 154.804 321.974 -3335.026 -18660.313 15324.287 -0.745 0.137 11 155.755 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
4 134.107 253.084 -2733.349 -15066.905 12333.557 -0.533 0.101 5 134.935 253.084 -2733.395 -14957.399 12224.004 -0.522 0.076 6 134.897 253.084 -2733.396 -14958.712 12225.316 -0.527 0.076 7 143.019 287.529 -3034.614 -17081.506 14046.892 -0.603 0.134 8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 9 154.804 321.974 -3335.921 -19000.732 15664.811 -0.709 0.139 10 157.106 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 11 155.755 321.974 -3336.040 -18490.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.084 -18441.711 1515.627 -0.785 0.106 13 167.900 356.419 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
5 134,935 253,084 -2733,395 -14957,399 12224,004 -0.522 0.076 6 134,897 253,084 -2733,396 -14958,712 12225,316 -0.527 0.076 7 143,019 287,529 -3034,614 -17081,506 14046,892 -0.603 0.134 8 147,097 287,529 -3034,741 -16674,459 13639,717 -0.665 0.103 9 154,804 321,974 -3335,921 -19000,732 15664,811 -0.709 0.139 10 157,106 321,974 -3336,026 -18660,313 15324,287 -0.745 0.137 11 155,775 321,974 -3336,040 -18690,131 15354,091 -0.722 0.115 12 159,537 321,974 -3336,084 -18441,711 15105,627 -0.785 0.106 13 167,900 356,419 -3637,310 -20736,372 17099,062 -0.822 0.141 14 169,553 390,865									
6 134.897 253.084 -2733.396 -14958.712 12225.316 -0.527 0.076 7 143.019 287.529 -3034.614 -17081.506 14046.892 -0.603 0.134 8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 9 154.804 321.974 -3335.921 -19000.732 15664.811 -0.709 0.139 10 157.106 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 11 155.775 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865									
7 143.019 287.529 -3034.614 -17081.506 14046.892 -0.603 0.134 8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 9 154.804 321.974 -3335.921 -19000.732 15664.811 -0.709 0.139 10 157.106 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 11 155.775 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310		134.935	253.084	-2733.395	-14957.399	12224.004	-0.522	0.076	
8 147.097 287.529 -3034.741 -16674.459 13639.717 -0.665 0.103 9 154.804 321.974 -3335.921 -19000.732 15664.811 -0.709 0.139 10 157.106 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 11 155.775 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310		134.897	253.084	-2733.396	-14958.712	12225.316	-0.527	0.076	
9 154.804 321.974 -3335.921 -19000.732 15664.811 -0.709 0.139 10 157.106 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 11 155.775 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755		143.019	287.529	-3034.614	-17081.506	14046.892	-0.603	0.134	
10 157.106 321.974 -3336.026 -18660.313 15324.287 -0.745 0.137 11 155.775 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195	8	147.097	287.529	-3034.741	-16674.459	13639.717	-0.665	0.103	
11 155.775 321.974 -3336.040 -18690.131 15354.091 -0.722 0.115 12 159.537 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.653 -22609.132 18670.479 -0.92 0.139 17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969	9	154.804	321.974	-3335.921	-19000.732	15664.811	-0.709	0.139	
12 159.537 321.974 -3336.084 -18441.711 15105.627 -0.785 0.106 13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.653 -22609.132 18670.479 -0.92 0.139 17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969	10	157.106	321.974	-3336.026	-18660.313	15324.287	-0.745	0.137	
13 167.900 356.419 -3637.310 -20736.372 17099.062 -0.822 0.141 14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.653 -22609.132 18670.479 -0.92 0.139 17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640	11	155.775	321.974	-3336.040	-18690.131	15354.091	-0.722	0.115	
14 169.555 356.419 -3637.369 -20492.895 16855.526 -0.854 0.139 15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.653 -22609.132 18670.479 -0.92 0.139 17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879	12	159.537	321.974	-3336.084	-18441.711	15105.627	-0.785	0.106	
15 180.536 390.865 -3938.653 -22625.924 18687.271 -0.922 0.142 16 179.648 390.865 -3938.653 -22609.132 18670.479 -0.92 0.139 17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956	13	167.900	356.419	-3637.310	-20736.372	17099.062	-0.822	0.141	
16 179.648 390.865 -3938.653 -22609.132 18670.479 -0.92 0.139 17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956	14	169.555	356.419	-3637.369	-20492.895	16855.526	-0.854	0.139	
17 179.086 390.865 -3938.652 -22650.455 18711.803 -0.916 0.142 18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27	15	180.536	390.865	-3938.653	-22625.924	18687.271	-0.922	0.142	
18 190.133 425.310 -4239.935 -24847.674 20607.739 -0.981 0.146 19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.163	16	179.648	390.865	-3938.653	-22609.132	18670.479	-0.92	0.139	
19 200.645 459.755 -4541.216 -27151.547 22610.331 -1.037 0.146 20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163	17	179.086	390.865	-3938.652	-22650.455	18711.803	-0.916	0.142	
20 106.918 168.195 -1837.164 -10106.423 8269.259 -0.477 21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.240	18	190.133	425.310	-4239.935	-24847.674	20607.739	-0.981	0.146	
21 130.157 237.085 -2439.969 -13066.484 10626.515 -0.785 0.068 22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -22532.548 18585.994 -1.351 0.144 <	19	200.645	459.755	-4541.216	-27151.547	22610.331	-1.037	0.146	
22 151.973 305.975 -3042.640 -16650.267 13607.627 -1.041 0.115 23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18732.952 -1.351 0.142 <td>20</td> <td>106.918</td> <td>168.195</td> <td>-1837.164</td> <td>-10106.423</td> <td>8269.259</td> <td>-0.477</td> <td></td>	20	106.918	168.195	-1837.164	-10106.423	8269.259	-0.477		
23 157.256 305.975 -3042.669 -16417.580 13374.911 -1.079 0.105 24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.142 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142 <td>21</td> <td>130.157</td> <td>237.085</td> <td>-2439.969</td> <td>-13066.484</td> <td>10626.515</td> <td>-0.785</td> <td>0.068</td>	21	130.157	237.085	-2439.969	-13066.484	10626.515	-0.785	0.068	
24 160.504 340.420 -3343.879 -18742.164 15398.286 -1.138 0.126 25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	22	151.973	305.975	-3042.640	-16650.267	13607.627	-1.041	0.115	
25 168.124 340.420 -3343.956 -18340.863 14996.908 -1.169 0.137 26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	23	157.256	305.975	-3042.669	-16417.580	13374.911	-1.079	0.105	
26 178.161 374.865 -3645.271 -20451.212 16805.942 -1.273 0.14 27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	24	160.504	340.420	-3343.879	-18742.164	15398.286	-1.138	0.126	
27 177.322 374.865 -3645.272 -20439.361 16794.089 -1.263 0.137 28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	25	168.124	340.420	-3343.956	-18340.863	14996.908	-1.169	0.137	
28 172.240 374.865 -3645.163 -20756.808 17111.646 -1.235 0.139 29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	26	178.161	374.865	-3645.271	-20451.212	16805.942	-1.273	0.14	
29 175.059 374.865 -3645.214 -20603.679 16958.465 -1.264 0.13 30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	27	177.322	374.865	-3645.272	-20439.361	16794.089	-1.263	0.137	
30 178.805 374.865 -3645.240 -20352.829 16707.590 -1.254 0.14 31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	28	172.240	374.865	-3645.163	-20756.808	17111.646	-1.235	0.139	
31 188.909 409.310 -3946.554 -22532.548 18585.994 -1.351 0.144 32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	29	175.059	374.865	-3645.214	-20603.679	16958.465	-1.264	0.13	
32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	30	178.805	374.865	-3645.240	-20352.829	16707.590	-1.254	0.14	
32 186.811 409.310 -3946.506 -22679.458 18732.952 -1.351 0.142	31	188.909	409.310	-3946.554	-22532.548	18585.994	-1.351	0.144	
		186.811							
55 175,521 115,755 1217,707 21015,576 20571,707 1,727 0,177	33	198.324	443.755	-4247.787	-24845.576	20597.789	-1.429	0.144	

Simca (Simca-S Version 6.0, *Umetri AB & Erisoft AB*) software was used to perform the PLS analysis. The conditions for the computation were based on the default values of the software. The criterion used to determine the model dimensionality - the number of significant PLS components - is cross validation (CV). With CV, when the

fraction of the total variation of the dependent variables that can be predicted by a component, Q^2 , for the whole data set is larger than a significance limit (0.097), the tested PLS component is considered significant. When the cumulative Q^2 for the extracted components, Q^2_{cum} , is larger than 0.5, the model is considered to have a good prediction ability. Model adequacy was mainly measured as the number of PLS principal components (k), Q^2_{cum} , the correlation coefficient between observed values and fitted values (R), and the significance level (p).

RESULTS AND DISCUSSION

PLS analysis for the 11 PCDD/Fs in the training set, with $\log K_{\rm OA}$ as dependent variables and the 12 quantum chemical descriptors as independent variables, resulted in QSPR model (1). The results of the model are listed in Table 3. In Table 3, $R^2_{\rm X(adj)(cum)}$ and $R^2_{\rm Y(adj)(cum)}$ stand for cumulative variance of all the X's and Y's, respectively, explained by all extracted components. So it can be concluded from Table 3 that 1 PLS principal component was selected in model (1), and the PLS principal components explained 58.7% of the variance of the independent variables, and 98.0% of the variance of the dependent variable.

Table 3. Model fitting results

Models	k	R ² _{X(adi)(cum)}	$R^2_{\Upsilon({\sf adi})({\sf cum})}$	$Q^2_{ m cum}$	R	p
(1)	1	0.587	0.980	0.969	0.991	4.080×10 ⁻⁹
(2)	2	0.950	0.984	0.981	0.994	7.602×10^{-10}
(3)	2	0.999	0.978	0.975	0.991	3.439×10^{-9}
(4)	1	0.993	0.971	0.970	0.987	2.085×10^{-8}

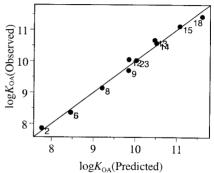
VIP (Variable Importance in the Projection) is a parameter that shows the importance of a variable in a model. Terms with a large value of VIP, larger than 1, are the most relevant for explaining the dependent variable. As indicated by the VIP values of model (1) listed in Table 4, the descriptors α , Mw, TE, EE, CCR, E_{lumo} and Q_{Cl}^{+} are more significant than the other 5 descriptors in governing the $log K_{OA}$ values of the PCDD/Fs. Although the PLS method offers the advantage of handling data sets where the number of independent variables is greater than the number of observations, it can be seen that considerable worse predictions are obtained if many irrelevant descriptors are included in the PLS model (Luco, 1999). So it is necessary to perform a PLS analysis that includes the 7 significant descriptors only. Such a PLS analysis resulted in model (2). The VIP values of model (2) (Table 4) showed that the descriptors E_{lumo} and Q_{Cl}^+ were less significant than the remaining 4 descriptors. A new PLS analysis with exclusion of E_{lumo} and Q_{Cl}^+ resulted in model (3). The VIP values (Table 4) of model (3) indicated that α and Mw were two most significant descriptors in governing the $log K_{OA}$ values of the PCDD/Fs. Again it would be interesting to perform a PLS analysis with the inclusion of the two descriptors only. Such an analysis resulted in Model (4).

As can be seen from Table 3, the statistics $R^2_{X(adj)(cum)}$, $R^2_{Y(adj)(cum)}$, Q^2_{cum} and R of model (2) are higher than those of model (1), and the significance level (p) of model (2) are smaller than the p value of model (1). So model (2) are more statistically significant than model (1), as a result of removing "noisy" descriptors. It was also because of removing redundant descriptors that $R^2_{X(adj)(cum)}$ of model (2) increased significantly

Table 4. VIPs (Variable Importance in the Projection) and pseudo-regression coefficients (Unscaled)

	Model	(1)	Model (2)			
Variables	VIP	Coefficients	Variables	VIP	Coefficients	
α	1.230	7.107×10 ⁻³	α	1.048	1.068×10 ⁻²	
Mw	1.219	2.355×10^{-3}	Mw	1.037	2.881×10^{-3}	
TE	1.201	-2.629×10 ⁻⁴	TE	1.023	-2.760×10 ⁻⁴	
EE	1.178	-4.046×10^{-5}	EE	1.006	-3.353×10 ⁻⁵	
CCR	1.172	4.778×10^{-5}	CCR	1.002	3.748×10^{-5}	
$E_{ m lumo}$	1.101	-5.819×10^{-1}	$E_{ m lumo}$	0.981	-1.603	
${Q_{\mathrm{Cl}}}^{+}$	1.047	4.770	${Q_{\mathrm{Cl}}}^{+}$	0.895	3.904	
$E_{ m homo}$	0.934	-1.234	Constant		3.436	
Q_{C}^{-}	0.869	-9.358				
HOF	0.717	-6.446×10^{-3}				
$Q_{\scriptscriptstyle m H}{}^{\scriptscriptstyle +}$	0.499	1.001×10				
μ	0.313	-2.041×10^{-1}				
Constant		-9.128				
	Madal	(2)		Madal (/	17	

	Model (3	3)		Model (4))
Variables	VIP	Coefficients	Variables	VIP	Coefficients
α	1.053	4.812×10 ⁻¹	α	1.004	2.820×10 ⁻²
Mw	1.002	8.422×10^{-3}	Mw	0.995	9.342×10^{-3}
CCR	0.982	-9.869×10^{-5}	Constant		2.386
TE	0.981	-2.628×10^{-4}			
EE	0.980	6.296×10^{-5}			
Constant		1.361			


over model (1). By the same comparison of statistics $R^2_{Y(adj)(cum)}$, Q^2_{cum} , R and p listed in Table 3, it can be concluded that model (4) is less significant than model (3), and model (3) is less significant than model (2). This implies that the descriptors E_{lumo} , Q_{Cl}^+ , CCR, TE and EE contain some necessary molecular structural information relevant to $log K_{Cl}$, so these descriptors should not be removed from the models.

Therefore model (2) is the best one. As indicated by R and p values of model (2) listed in Table 3, for the 11 PCDD/Fs under study, the correlation between observed and predicted $\log K_{\text{OA}}$ values is very significant (Figure 1). As the cross-validated Q^2_{cum} values of model (1) is remarkably larger than 0.50, model (2) is surely stable and has a good prediction ability. Based on model (2), $\log K_{\text{OA}}$ for the other PCDD/Fs were predicted, as listed in Table 1. As shown by Table 1 and Figure 2, the predicted values were consistent with the corresponding $\log K_{\text{OA}}$ values determined semi-emperically by retention time indices (RTI) using eq. 2 of Harner $et\ al.\ (2000)$. So model (2) has been validated on the basis of predictions for PCDD/Fs not included in the training set.

The pseudo-regression coefficients of the independent variables and constants transformed from PLS results for the 4 QSPR models were also listed in Table 4. From the positive and negative symbols of the coefficients of the independent variables, one

can evaluate the effects of each independent variable on the dependent variables. Based on the unscaled coefficients and constants, QSPR equations like those obtained from multiple regression analysis can be obtained.

From the data in Table 4, one may conclude the following: (I) Increasing α , Mw, CCR and Q_{Cl}^+ values of the PCDD/Fs leads to increasing $log K_{OA}$ values, while increasing TE, EE and E_{lumo} values of the PCDD/Fs leads to decreasing $\log K_{OA}$. This is because these descriptors are inter-correlated. α correlates with Mw, CCR and Q_{CL}^+ positively, and correlates with TE and EE negatively. Their correlation coefficients were listed in Table 5. α is the most significant descriptor in governing $\log K_{OA}$ of the PCDD/Fs. The increase of $\log K_{OA}$ with α is reasonable since intermolecular dispersive forces are in direct proportion to the product of α of two interactional molecules. PCDD/Fs with great α value may have great intermolecular dispersive forces with octanol molecules, which favor to partition into octanol phase. So the more chlorines in PCDD/F molecules, the greater the α and Mw, and the greater the $log K_{OA}$ values. (II) Increasing E_{lumo} values of the PCDD/Fs leads to decreasing $\log K_{\rm OA}$ values. $E_{\rm lumo}$

Figure 1. Plot of observed $\log K_{OA}$ values versus those predicted by model (2)

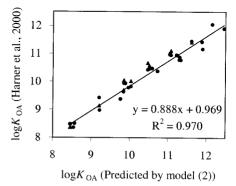


Figure 2. Plot of logK_{OA} values predicted by model (2) and those determined semi-emperically by retention time indices (RTI) using eq. 2 of Harner *et al.* (2000)
Determined semi-emperically by RTI;
▲Determined by generator column methods

measures the ability of a molecule to accept electrons in intermolecular interactions. So it can be concluded that the lower the E_{lumo} values, the greater the tendency of PCDD/F molecules to accept electrons in intermolecular interactions, the greater the

Table 5. Correlation coefficients between some descriptors (p<0.05)

	α	Mw	TE	EE	CCR	$E_{ m lumo}$	${Q_{\scriptscriptstyle{ ext{CL}}}}^{\scriptscriptstyle{+}}$
α	1						
Mw	0.995	1					
TE	-0.980	-0.991	1				
EE	-0.965	-0.983	0.997	1			
CCR	0.962	0.981	-0.996	-0.999	1		
$E_{ m lumo}$	-0.825	-0.794	0.708	0.671	-0.664	1	
Q_{CL}^{+}	0.847	0.862	-0.863	-0.853	0.851	-0.653	1

intermolecular (covalent) interactions between PCDD/F and octanol molecules, and thus the greater the $\log K_{\text{OA}}$ values. (III) Increasing Q_{Cl}^+ values of the PCDD/F molecules leads to increasing $\log K_{\text{OA}}$ values, which implies possible intermolecular electrostatic interactions between PCDD/F molecules and octanol molecules, with the chlorines in PCDD/F molecules to accept electrons and the oxygen atoms in octanol molecules to donate electrons.

Acknowledgments: The study was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE (TRAPOYT), P. R. China, and the State Key Laboratory of Freshwater Ecology and Biotechnology (2000FB12), P. R. China. The research results were attained with the assistance of the Alexander von Humboldt (AvH) Foundation and we thank the AvH foundation. We thank Dr. Tom Harner from Meteorolgical Service of Canada, Environment Canada, for providing us the data and reviewing the manuscript.

REFERENCES

- Fossi MC, Casini S, Marsili L (1999) Nondestructive biomarkers of exposure to endocrine disrupting chemicals in endangered species of wildlife. Chemosphere 39:1273-1285
- Harner T, Green NJL, Jones KJ (2000) Measurements of octanol-air partition coefficients for PCDD/Fs: A tool in assessing air-soil equilibrum status. Environ Sci Technol 34: 3109-3114
- Kaliszan R (1993) Quantitative structure retention relationships applied to reversedphase high-performance liquid chromatography. J Chromatogr 656A:417-435
- Luco JM (1999) Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci 39: 396-404
- Nebert DWC (1989) The Ah locus: genetic differences in toxicity cancer mutations and birth defects. CRC Crit Rev Toxicol 20:153-174
- Stewart JJP (1989a) Optimization of parameters for semiempirical methods I . Method . J Comp Chem 10: 209-220
- Stewart JJP (1989b) Optimization of parameters for semiempirical methods II. Applications. J Comp Chem 10: 221-264
- Wold S, Wold H, Dunn W J III (1984) Report UMINF-83, Department of Chemistry, University of Umeå, Sweden
- Safe SH (1986) Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Ann Rev Pharmacol Toxicol 26: 371-399
- Younes M (1999) Specific issues in health risk assessment of endocrine disrupting chemicals and international activities. Chemosphere 39:1253-1257